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Abstract

Babuika and Oh have introduced a new approach called the Method of Auxiliary
Mapping(MAM), to deal with elliptic boundary value problems with singularities. In
this paper this method is extended so that it can handle the plane elasticity problems
containing singularities. In order to show the effectiveness, this method is compared
with the conventional approach in the framework of the p-version of the finite element
method. Moreover, it is demonstrated that this method yields a reasonable solution for
those elasticiy problems containing strong singularities which even can not be solved
by using the h-p version of the finite element method.
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1 Introduction

In ([8]) and ([30]), we introduce a new approach called the Method of Auxiliary Map-
ping, to deal with domain singularity and interface singularity, which arise in such
elliptic boundary value problems as steady state heat transfer. In this paper, this
approach is extended for plane elasticity problems containing singularities.

There are three versions of the finite element method: the h-version, the p-version,
and the h-p version. The h-version ([13],[35]) is the standard one, where the degree p
of the elements is fixed, usually at a low level, typically with p = 1, 2, or 3 and the
accuracy is achieved by properly refining the mesh. The p-version ([10], [12], [36]),
in contrast, fixes the mesh and achieves better acc,,racy by increasing the degree p
of the elements uniformly or selectively. The h t 7'!n ([4]-[5], [11], [16]-[21]) is a
combination of both. In this paper, we are con•. .;.- ith the p-version of the finite
element method.

In the theory and practice of the finite element method, much work has been done
to design special approaches to deal with elasticity problems containing singularities
([25],[32],[33],[38]). Singularities occur when the solution domain has corner,-: abrupt
changes in boundary data, or consists of two or more materials. These singularities
are called a corner singularity ([9],[15],[27],[34]), a boundary data singularity([29],j37]),
and an interface singularity([23],[26],[29],[31]), respectively.

In an effort to provide accurate and economical solutions, many different approaches
to deal with singularity in elasticity problems have been attempted over the years, Basi-
cally there are three ways the problem is approached: mesh refinement([7],[11],[161,171,
[18], [19], [20],[35]); use of special singular elements([1],2],[22]); and use of (nonlocal)
special singular functions((24]). Expanding the trial space by adding special singular
(local or global) functions which mimic the singularities can lead to a more accurate so-
lution, but more problems will be generated, especially in computer coding. Moreover,
one must know the structure of the eigenvalues corresponding to the singular points
in order to choose proper singular functions. The most popular approach is the mesh
refinement, but its success depends on a proper choice of mesh and it also requires
longer computing time. Moreover, when the singularity is very strong, as in Example
5.11, this approach cannot give any acceptable results.

In this paper, the Method of Auxiliary Mapping introduced in ([8]) and ([30]) will be
modified so that it can efficiently handle the singularities which arise in plane elasticity
problems. It will be shown that this new approach yields far better results for elasticity
problems containing singularities than do conventional approaches at virtually no extra
cost. Moreover, this method gives a reasonable solution for those elasticity problems 0
which even can not be solved by using the h-p version of the Finite Element Method. 0

This paper is organized as follows: The notations and the model problems to work
with are described in §2. In §3, the structure of the corner singularity and basic lemmas
are introduced. In §4, the Method of Auxiliary Mapping is explained in the context of
plane elasticity, and the improvement of error bounds by Method of Auxiliary Mapping od~s
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is presented. Various numerical results to demonstrate effectiveness of our method are
given in §5. These include an especially remarkable success in Examples 5.1 and 5.11
and MAM's handling of interface singularities caused by an abrupt change in material
properties. Finally, the concluding remarks are given in §6.

2 Preliminary

2.1 The Notation

For A E "?2 a polygonal domain with boundary 8Q, we let L2(fl) = H°(fl), Hk(fl), H0k(1l),
k > 0 integer, denote the usual Sobolev spaces. For u E Hk(f?) we denote by IjuIjk,.
and uik,ln, the usual norm and seminorm, respectively.

In elasticity, the state variable is the displacement vector denoted by
{u} = {u,(x,y),u•(x,y)} T and the flux is the stress tensor denoted by {a(u)} =

4u)',G),T(u)}T. Let E(u)} -• (), 44,( ()}T be the strain tensor. Then the strain-
displacement and the stress-strain relations are given by

.(u)} -= [DlIu} and {o(u)} = [EI{f(u)} (1)

respectively, where [D] is the differential operator matrix:

a 0
aX_ a[D]= 0 -

ay Ow
TaY ax*

and [E] = [Eij], 1 < i,j • 3, is the symmetric positive definite matrix of material
constants. For an isotropic elastic body, in the case of plane stress,

1_ v giE 1 0

[E] --
0 0

2

where E is the module of elasticity and v(0 <5 v < 1/2) is Poisson's ratio.

The equilibrium equations of elasticity are

[D]T{o0(u)}(x,y) + {.f}(x, Y) = 0, (x,y) E S1, (2)

where f} = If.(x, y), fy(x, y)}T is the vector of internal sources representing the boay
force per unit area.
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2.2 The Model Problem

Introducing the relations (1) into (2), the equilibrium equations can be expressed in
terms of the displacement vector {u}. Consider the following system of the partial
differential equations in terms of the displacement vector:

[D]T[E][D]{u}(x,y)+ {f}(z,y) = 0, (x,y) E fI (3)

subject to the following boundary conditions:

[N]{fo(u)}(s) = (s) s) = {s•(s),Ty(s)1 T , 8 E r 1 , (4)
{U}(S) = {ii}(S) {fi(S), ii()} T , s E r 2, (5)

where r1 U F2 = Ofl, {n., ny}T is a unit vector normal to the boundary 0fl of the
domain fl and

[N] = 0 n,

Let HD,(11) = {{w} = {wyw 1 } E [H'(fl)]2 : {w} = 0 on r2}. Then, as usual,
the variational form of (3)-(5) is as follows: find the vector {u} such that u., u, E
H'(l), (u} ={ti} on rP and

B({u}, {v}) = Yf({v}), for all {v} E HD,(fl), (6)

where

B({u}, {v}) = f([D] {v})T [E] ([D] {u})dxdy, (7)

VD= J {v}{f}dxd f + ,{v}T{§t}ds. (8)

By the strain energy of the displacement vector { u} we mean U({ u}) = (1/2)B({u}, { u}).

The finite element approximation of the solution of (6) is to construct approxima-
tions of each component of the vector {u}. We denote the basis functions defined on 11
by Ti(x, y), i = 1,2, ... , n. The components of the displacement vector in term of basis
functions %i are of the form:

n

t=1
U'(X Y)= ~ai+l~i(x, y).

t=1

where ai(i = 1, 2, ... , 2n) are called the amplitudes of the basis functions 'i. Let

{'',} = { 12,(xy) , 1 , n (9)

{¢1I} = { ( ) ,i=n+ 1,n+2,...,2n. (10)
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Then {u} can be written as:
2n

{u} = Ti}.
i=1

Moreover we have the following:

Lemma 2.1 The bilinear form B({u}, {v}) on an element e becomes

j(V'P)T [Ell E3E ](v~) if {v} f Ti,'O}T and fu}= {f%,, O}T,

j(V,.i)T [E33 E32 ](VTI) if {v}} f{0, TI}T and {u}= {O, j}T,E23 E22I

je(V~,)T [ E13 E 12 ](Vp'i) if {v} -- {tiO}T and {u} = {0, pj}TE33 E32I

j(V*!)T [E31 E33 ] (V'Qi) if {v} f{0,,@,}T and {u} - {•j,0}T.

3 The Corner Singularities

The accuracy of the finite element approximation depends on the regularity of the true
solution ([6]). In the presence of singularity the solution of (3)-(5) has a low regularity.
In this section the structure of the singularity due to nonsmoothness of the domain
will be investigated. For this purpose the equations of elasticity (3) will be localised
by restricting (3) on a neighborhood of a singularity of the domain fQ.

3.1 The behavior of a solution in the vicinity of nonsmooth
boundary

Let us consider the equations of elasticity (3) in the vicinity of a corner shown in
Fig. 3.1. When the body force is neglected, the equations of elasticity in the polar
coordinates system can be written as

S02 u, 1Au9 U 10 f0Uo I OU,+ U#}
Or Or rOOig r r,00 Or rO& r

(C + 211)--{ 1 a--au a + !10 = 0 (12
r '0 ur' rl~u + r' + ý{r u lou -5---r0rO r rO 0r 9 O (12.)

where

_ E yE1A E and( v (13)

TO -+V) (1 + v)(1 - 2v)'



which characterize materials. Here E is the module of elasticity and v is Poisson's
ratio.

Tiie radial and tangential stresses on the wedge surfaces are

aos = (Lu + 1- + - ) + 2,,(-- + -), (14)
Or rOD r rO r,Oue 1 Ou,. uo

o~ ~~8 = -f r No r)"()

Let us consider the solutions of (11) and (12) in the following form:

u, = r7 f(O), (16)

us = rg(o). (17)

Substitution of these forms inLo (11) and (12) gives a system of ordinary differential
equations in f and g. One can see that the solution of this system has the form

f = A, cos [(1 + A)01 + A2 sin [(1 + A)01

+A 3 cos [(1 - A)0] + A4 sin [(1 - A)0], (18)
g = A2 cos[(1 + A)01 - A, sin[(I + A)01

+77A4 cos [(1 - A)0] - i1A3 sin [(1 - A)0], (19)

where 77= (3 + A - 4v)/(3 - A - 4v). Then displacements and stresses in the vicinity
of the comer will be expressed as

r- U, = Acos[(I + A)0]+ A 2 sin[(1 + A)0]

+A3 os [(1 - A)O] + A4 sin [(1 - A)0], (20)

r-Auo = A2 cos[(1 + A)01 - A sin [(1 + A)0]

+r/A 4 cos [(1 - A)01 - rqA3 sin [(1 - A)0], (21)
IA-r - 9o = -2AA 1 cos [(1 + A)0] - 2AA 2 sin [(1 + A)0]

-(1 + A)(1 - rq)A 3 cos [(1 - A)0]

-(1 + A)(1 - 71)A4 sin [(1 - A)0], (22)

/r-'rl-AorOe = -2AA, sin [(1 + A)0] + 2AA 2 cos [(1 + A)0]

-(1- A)(1 - i7)A3 sin [(1 - A)O1

-(1 - A)(1 - v7)A4 cos [(1 - A)0]. (23)

From now on, "the wedge angle a" stands for "the wedge angle 2a". Let us label
the boundary conditions along the boundaries 0 = a and 0 = -a of a wedge-shaped
region bounded by radii 0 = ±a, as shown in Fig. 3.1, as follows:

BC1 : ue=u,.=O,
BC2 : oee = r,.e = 0 ,
BC 3 : us = r,.o = 0.
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In order to determine the eigenvalues A and the constants A, , A2, A3, A4 , for various
boundary conditions on the boundary surfaces 0 = ±a, these boundary conditions are
applied to the equations (20)-(23). Then because of the given boundary conditions, we
obtain the following trigonometric equations to determine the eigenvalues A (see, [25]
and (32] for details):

sin(2Aa) = ±A sin(2cr)/C if BC1-BC, is imposed,
sin(2Aa) = ±A sin(2a) if BC2-BC2 is imposed,
sin(2Aa) = ± sin(2a) if BC3-BC3 is imposed,
sin 2(2AaW = (1 + A)2 /4A - A2 sin 2 (2a)/C if BC1 -BC2 is imposed,
sin(4,a) = -X sin(4a) if BC2-BC 3 is imposed,
sin(4A) = A sin(4a)/C if BC 1 -BC 3 is imposed,

where C = 3 - 4,/u for plane strain and C = (3 - v)/(l + v) for the plane stress and

BC,-BCj means that BCj is on one side and BCi is on the other side of the boundary
surfaces, 0 = ±ia.

These trigonometric equations could have complex roots as well as real roots. For
various wedge angles a and for various boundary conditions, min{Re(A)} are computed

in (§3.8 of [32]). In particular, if the condition BC3 is imposed on both of 0 = ±a,

0 < a < 900, then the smallest real eigenvalue A (min{Re(A)}) can be arbitrary small

as a goes to 900. Fig. 3.2 shows the smallest real root A of the trigonometric equation:

sin 2Aa = sin 2a, for 750 < a < 900. In such cases, the singularities are too strong to

obtain any reasonable approximations by standard numerical approaches. These cases
will be elaborated in Example 5.11.

rp(r,e0)

Fig. 3.1. The vicinity of a singularity with wedge angle a.
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Fig. 3.2. The smallest eigenvalue versus the wedge angle a when the normal
displacement and tangential traction are zero along the boundary surfaces, 0 = ±a.

3.2 The Computation of the Bilinear form on the Regions
transformed by Auxiliary Mappings

Now we consider an auxiliary mapping which will be used to describe our new approach
to deal with elasticity problems containing singularities. Let z = x + iy and C = • + iq.
Let

S = {(r,0): O<_r<R,a<O<b}, (24)

S " = {(r*,0 "): 0 _<r "•R '/#,a/I3•l _ "0 < b/I } (25)

be two circular sectors in the z-plane and the C-plane respectively. Suppose Wo : S* --+ S
is the conformal mapping defined by

z = Vw()-= ( (26)

and let b be the inverse function of W, then the determinants of their Jacobians are

IJ((,)l = #'(r,)2 (1-1) and IJ(4')l = r2'1-0)/# (27)
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respectively. We denote the shifted function onto S* of a function f : S - R R by the
conformal mapping V by f = f o WO.

The following lemma was proved in [30] and it will play a key role in the Method
of Auxiliary Mapping.

Lemma 3.1. For u, v E H 1 (S), we have

((UTall al 2 ]Vvdxdy (=4f q11 q12 Vdd7(8
is ' a21 a22 j S. (ViTIq 21 q22IWgi (8

where t= (1- 0)0"

q= = all cos2 t + a22 sin 2 t - (a2l + a 12) sin t cos t
q12 = (all - a2) sin t cos t - a 21 sin 2 t + a12 cos2 t
q21 = (a,, - a22) sin t cost - a 12 sin2 t + a2l cos2 t

q22 = al sin2 t + a22 cos 2 t + (a12 + a2 l) sin t cos t,

and (r*,e*) represents the polar coordinates of points in S*. For v E HI(S) and f E
le(S), we have

j f(xy)v(x,&y)dxdy = fi. /2(ý2 + ,12)- 1j(ý', )O(C, TI)d~dr7. (29)

Remark 3.2. (1) From Lemma 2.1, the bilinear form B({Q }, {f*j}) for the basis
vector functions has the same form as the left hand side of the integrals in Lemma 3.1.
Thus, the local stiffness matrices on S by the basis vector functions (9)-(10) are the
same as the local stiffness matrices on S* by the mapped basis vector, {fFi} = {fi@i} o0go".

(2) Constraining the stiffness matrices on the elements in S due to the non-homogeneous
essential boundary conditions {f ii, fi}}T along parts of the boundary OS of S has the
same effect as constraining the stiffness matrices obtained by the right hand side of
Lemma 3.1 by using the boundary conditions {ffio.j o, fi oVo"}T" along the corresponding
boundaries of S*.

4 The Method of Auxiliary Mapping: A New
Approach to Deal with Singularities

4.1 Description and Implementation of the Method

Overall structure of our method is as follows. From the arguments given in section 2.1,
if no body forces are present, then in a neighborhood Sp of a singular point P, each

9



component of the displacement vector can be written as

Q(P)

up( ,0) = KjFj(r)Gj(0) + wQ(p)(r,). (30)
j=1

Here (r, 0) are the polar coordinates with respect to the singular point P. The func-
tion Gj(O) is analytic up to the boundary of Sp and Fj(r) = Re(r'Pi ]ogf(r)) or
Im(rAPi logP(r)), where p = 0 except for some special angles. The eigenvalues Apj
are in general complex numbers with positive real parts and Re(Apj) < Re(Apj+1 ).
Fj(r), G,(O) depend on the interior (wedge) angle a; Kj are stress intensity factors.
wQ(p) is smoother than the first term on the right hand side of (30). Q(P) is a posi-
tive integer and Re(ApQ(P,) < 1. Let )(r) be the smallest real number of Re(Apj) and

suppose X( < 1. If we let / = 1I /. and (r, 0*) denotes the polar coordinate system
on S; centered at P*, then

Q(P)
fip(r*,O') E KiFi((r*)1)Gj(fO") + wQ(p)((r*)',I3O") (31)

j=l

and #A(") > 1 for j 1,...,Q(P). Therefore fip(r,0*) = (up o w 1)(r*,0*) is inI pi --

H-(S;),m > 2.

Thus, on S;, the standard finite element method could yield a good approximation
of fip in H1 (S,). Since our auxiliary mappings are conforming and the mapping sizes
Sare assumed to be > 1, the H1 -norm is preserved under the transformation by the
auxiliary mapping. Thus, approximating fip in HI(S,) by the standard finite element
basis functions defined on S; has the same effect as approximating up on Sp in H1 (Sp)
by using singular basis functions on Sp constructed through the auxiliary mapping
VO. However, the novelty of our method lies in never constructing such singular basis
functions.

We now describe our method, the Method of Auziliary Mapping (MAM). Suppose
the exact solution {u} has singularities at P1 , P2 , ... , PM. In what follows, u denotes the
displacements u. and ut,. In this case, our method goes as follows:

Step 1: Determination of the Singular Regions

At each singular point Pq, construct a neighborhood of the singular point P., a
sector Sq centered at Pq. Namely,

Sq = {(r,) :0< r< Rq}n Q,

where (r, 0) are the polar coordinates at Pq. Our method is not sensitive to the size
of the radius R., provided Rq is chosen small enough so that Sq is a circular sector in
fl and any two different neighborhoods of two singularities are disjoint. Rq is usually
selected to be < 1.

Step 2: Selection of Auxiliary Mappings

10



Suppose A,',) is min{Re(Aq,)}, where A,. are the eigenvalues of the singularity at
Pq. Then the mapping sizes of auxiliary mappings are selected as follows:

#9 ifA)< 1, (32)
1, otherwise.

Now the auxiliary mapping $q : S- - Sq is defined by z = 09(,) = a conformal
mapping from the C-plane to the z-plane.

Step 3: Triangulation of fl
For each Sq , generate a curvilinear triangulation T. of Sq as shown in Fig. 4.1.

Then construct a triangulation T on n such that TIsq = Tq. Let Tq" be the image of
E. under (V09)' (see, Fig. 4.1).

For e* E Tt * ( e E To = T\ U Tq), 0- (Ce) is the usual elemental mapping from the
standard element Ot (which is either the reference triangle or rectangle depending on
whether e" (e) is a triangular or a rectangular element) onto curvilinear elements e'(e)
respectively. Since we allow circular arcs as sides of elements, the elemental mappings
could be of the blending type([14]) as those in chapter 6 of ([361) and satisfy the usual
technical conditions(f4],[20]) that lead to conforming finite elements.

Step 4: Computation of Stiffness Matrix and Load Vector.

In computing local stiffness matrices and local load vectors,

* Use the standard elemental mapping 4e for the elements e in the nonsingular
region N = fl\ UM Sq.

9 Use the standard elemental mappings te. for the elements e in the emgular
regions U',Sq; in other words, local stiffness matrices and load vectors on the
element e in the singular region are replaced by those computed on the elements
e, = (')-(e) by using the right hand sides of equations (28) and (29).

Let 0S denote the special elemental mapping from fl8t onto e E Tq defined by
Cs = o '... We will call this special elemental mapping $s the singular elemental
mapping.

Remark 4.1. (1) If O.S is used as the elemental mapping on the element e in
a singular region Sq then the basis functions constructed through 4, will mimic the
original singularity on S.

(2) Suppose ei E To , e2 E UCI and -y = el fn e2 = {(ro,0) : a < 0 < b}. Then the
conformal mapping (V~q)-1 is linear on the closed interval [a, b]; therefore, the basis
functions constructed by using the usual elemental mapping ,e for e C flo and the
singular elemental mapping V, for e C USq are continuous along their common edges.

11



Let .ij be the standard shape functions on f1,, .A/" = Rio,' and A' = .jo(ýS)-1.
Then N, o ý*O =AQVj*. Hence, from Lemma 2.1 , we have

Jj V•ai1 ]( V."J )T dX = Jj VA7{q,](VA•") Tdg (33)

J Ajf dx = j JQ,0 )j)IfA-dý. (34)

Instead of computing the left-hand sides of (33)-(34) involving singular shape functions,
we compute the right-hand sides of the equations for the local stiffness matrix and load
vector on the elements e in the singular regions. Let us note that from Lemma 3.1
the coefficient qi, are not singular. Moreover, If /3 is chosen to be an integer > 2, the
integrand of the left hand side of (34) is as smooth as f.

Thus, the computer implementation of our method is quite simple since any existing
finite element code can be used for the computation of the right-hand sides without any
alterations. Indeed, in MAM, unlike other singular function approaches, the banded
structure of the resulting stiffness matrix is not lost and no severe problem with ill
conditioning will occur.

O*=Ctq/ Pq

Sq c S *

sql 0=0 
0=

Pq I ý/AB_
r qIq

r q

110=W%

Fig. 4.1. A singular neighborhood Sq of a singular point Pq and its mapped
domain S• under the mapping Wk,. The scheme T," on S; and the corresponding mesh

q on Sq.
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Let Vp = { {w} = (w1,w 2) E HD(fl) w:toile o b.(wil, o s) is a polynomial of degree

p on flA for all elements e in flo (e in UM1 Sq)}, where fl~t is the standard triangle,
T, or the standard rectangle, Q, according to whether e is a triangular element or a
rectangular element. Then the p-version of the Finite Element Method in our
context is as follows: Find an element {up} E Vp such that

B({up}, {fv}) = .F({v}), for all {v} E V,. (35)

The dimension of Vp will be denoted by Np and will be called the degree of free-
dom(DOF). Let us note that in the p-version of the finite element method the trian-
gulation of fl is fixed and only the degree p of the basis polynomials is increased.

If {u.} is the solution of (6) then

II{u,} - {ue}llE = min Il{w} - {u..}IIE, (36)

where ll{w}ll -B({w}, {w}) is the energy norm.Ee2

4.2 The Rate of Convergence.

Let flo and S, be the same as those in the preceding argument. Suppose u.Ino E

HvO(fo),Ue31s, EHv,(Sq), vo>_2, vq <2, 1 <_q<_M, andifA tj)=min{Re(Aj)} <

1, then our method with auxiliary mapping $q, fpq = 1/A() will greatly reduce the in-
tensity of the singularity at P.. Therefore, fi, = iso p, E H'q(S*) and v; > 2,
which is larger than vq.

By using the inequality (see [30] for detail),

Ilvll,s _< 1I6ll,s.,

the following theorem was proved in ([30]).

Theorem 3.1. Suppose t(i'''''UM) is the finite element solution, on a quasi uni-

form mesh, obtained by employing the method of auxiliary mapping with the auxiliary
mapping pq on each singular region Sq in the framework of the p-version of the finite
element method. Then we have

IIA SO)- ?.SIin < r: 0 llu'XLOno + M lli9ll (37)
- NP_" C/ 1: -q*-s (37)Ilta,'"a,) ,.lln<_ Co N~p•,/ +=1 N•_ I/

where Np is the degree of freedom and, for each q, 0 < q < M, Cq is independent
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4.3 Computation of Strains and Stress

The strains are computed from the strain-displacement relationships and the stresses
are computed directly from the strain-stress relationships. However, in MAM, those
computations on the singular regions are different from the standard approach.

(4.3A). Suppose b is the inverse mapping of the auxiliary mapping Wo : S* -+ S,
defined by (26), and J((p#) = 0(x1, X2)/I(e 1 , 2) denotes the Jacobian matrix of (p,.
Then [J(O) o voj]. J(WP) = I and hence

[J(w)]- 1 = J(A ) o W. (38)

Moreover,

j(0)- J(AO)o0W

_ 1 [ - sin( )O1

- /3 sin(1 ,)8 cos(3- )8

- 1 cos(1 - #3)e" - sin(1 - /3)O] (39)
sin(1 - 8)0* cos(1 - 6)0B "J

Let us recall the singular elemental mapping for an element e is defined by

4s = Woo 4 : E -- e,

where : e* --+ e is the auxiliary mapping defined by z - { and 6 E -. e* is the
standard elemental mapping. Now we have

[J(OS)]-1 = [J(V o4)'

= J([o 'W-) o (Woo)
= [J( W-1 o p-)] o (W o 4)

=[(J(,O-') 0 W-') -J(AV-)] o (W 0@

= {(([J(A)f]- 0 1) o W-1)

([J(()]-1 o vao-)} o (wo a $) by (38)

= ([J(,)]- 1 ) ([J(')]-f o 'b)

and hence

[j(.S)T]- = ([J(o)I-' o,@) T . ([j(.)]-')T

= ([J(po)]-' a 4)T. ([j(,)] T)-,. (40)
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Suppose P = (xI, x 2 ) is a point in an element e C f? and let t : E -- e be the
elemental mapping. Then the strains at P are

fdu),• ,,,u , ,= [Dj {ui,U2}(P)

= [0 0]VXUI(P)+ 0 1]Vu 2(P)
0 1 1 0

10 n
0 [j()T] (P) ajVtAf,(P)

0 11

+ 0 1 j(O)r- (P) EaI+nV(VN(P),
1 0' 1=1

where O(P) =P, V, = ()T and V (, a"9 )T.

Suppose e is an element in the singular region on which MAM is applied, then
"[J(qO)TJ -1 is replaced by [J(§S)T- 'and it follows from (39) and (40) that

[j(4S)T]-1 = ([j(o)]-l o)T. ([j(O)]-))T

1 (r.)I-#[ cos(1 -- P)0* -- sin(1--)* [1 r 2 1 (41)
( sin(l - )0* cos(1 -)8 " J11 J;2 (

where J• is the (ij) component of ([j($)]T)-'.
It should be noted that in (41), the exponent (1 - 0) < 0 since the mapping size P

is larger than 1. Thus, unlike the standard finite element solution, from (41), we can
see that the strains at the singular points, calculated from the finite element solution
obtained by using MAM, are infinity. This is because our solution by MAM resembles
the exact solution near the singularities.

(4.3B) The stresses are computed from the stress-strain relation. Usually the
principal stress and the equivalent stress are of engineering interest. The eigenvalues
of the following matrix

[1 0'12

01, 0'12J

are called the principal stresses and they will be denoted by or(I) and o,(2). The lines
which are perpendicular to the eigenvectors of this matrix are called the principal lines.

In the case of plane stress, the third principal stress 0'(3) = 0 and in the case of
plane strain, 0(3) = V(cr(1) + a(2)). Now the equivalent stress is defined as follows:

02 [ [0(1)- 0'(2))2 + (0(2) - a())2 + (0(3) O(1))21
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5 Numerical Results

In [28] and [30] some comparisons were made between MAM (the Method of Auxiliary
Mapping) and some of the best of alternative methods such as Finite Difference, Finite
Element, and singular function methods. As benchmarks, elliptic problems having
corner, jump boundary data, or interface singularity were considered. In comparisons
given there, it was shown that MAM virtually requires no extra cost. Since CPU
time comparisons for elasticity problems between MAM and alternative approaches
are essentially the same as those in the previous papers, we only compare accuracy
versus DOF(Degree of Freedom) between MAM and the conventional approach in the
framework of the p-version of the Finite Element Method.

In the first two examples, the performance of the Method of Auxiliary Mapping in
the framework of the p-version of the Finite Element Method will be tested using the
elasticity problems whose true solutions are known. In this section, all computations
are the plane stress. Recall the auxiliary mapping is defined by

wp(r, 0) = (r" cos(fP0), r' sin(30)) (42)

The number f is called the mapping size of the auxiliary mapping. Throughout this
section, " With Map" stands for the results obtained by applying MAM on Mesh I(the
initial coarse mesh), shown in Fig. 5.1. " No Map " stands for the results obtained by
the standard Finite Element Method on Mesh I without applying MAM.

Example 5.1. Suppose the tractions are free along the boundaries a = ±:r in Fig.
3.1. Then by using a similar argument given in §3.1, the smallest eigenvalue is A = 0.5
and the corresponding stress functions are

a= Ar(-1){(2- Q(\ + 1))cos((A- 1)0)
-(A- 1)cos((A- 3)0)} (43)

av= Ar(-'){(2 + Q(A + 1))cos((A - 1)0)

+(A - 1) cos((A - 3)0)} (44)
=• - r(A-l){(A• -1)sin((A• -3)0)

+Q(A + 1)sin((A - 1)0)}, (45)

where A = 0.5 and Q= 1/3.

Let us consider the equations of elasticity on a domain fl = {(x, y) : -2 < x _<

2,-2 :5 y _5 2} shown in Fig. 5.1, with crack along the negative x-axis, which is
isotropic with material constants E = 1000(modulus of elasticity) and v = 0.3 (Pois-
son's ratio).

The traction functions given by (43)-(45) are imposed along the entire boundary
of 0l1 , including both sides of the crack. Furthermore, the following constraints are
imposed: the displacement vector at (0,0) is fixed and the y-components of the dis-
placement vector at (2, 0) is fixed.
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On the mesh shown in Fig. 5.1, MAM is applied with mapping size /3 = 4. In
order to show the effectiveness of MAM, the true stress, the computed stress obtained
by using MAM, and the computed stress by the standard Finite Element Method are
compared one another. In Fig. 5.2, the stress oa on [0,1] x [-7r, 7r] are compared. In
Fig. 5.3, the shear stress rT, are compared on the same subregion. From Fig. 5.2 and
Fig. 5.3, one can see that MAM is quite effective in handling crack singularity. In
other words, one can not see any difference between the true stress and the computed
stress obtained by using MAM. However, there is significant difference between the
true stress and the computed stress by the standard FEM. The stress tensor along the
line y = 0.0129 are given in Table 5.1.

The crack singularity discussed in Example 5.1 is not too strong. Thus it is possible
to obtain a practical solution by sufficiently refining the mesh on the domain ftj. How-
ever, as mentioned in §3.1, there are some elasticity problems containing singularities
which are too strong for the mesh refinement method to yield any practical solutions.

In the next example, it will be shown that MAM can give an accurate solution
even for those problems to which the mesh refinement method alone can not yield any
practical solutions.

(0,2)

(-2,2) (2,2)

(-2,0) (2,0)

(-2,-2) (0,-2) (2,-2)

Fig. 5.1. The scheme of the domain fl1 and Mesh I.
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Table 5.1. The Stress a., a,, ,r, along the line y = 0.0129: True(True stress), With
No Map(computed Stress by the standard FEM) and With Map (computed Stress by
using MAM). The .computed stresses are obtained by using basis functions of order 8.

a~x
x y True No Map With Map

-0.40000 0.0129 0.05093822 0.04823590 0.05089369
-0.34839 0.0129 0.06264135 0.15461398 0.06262561
-0.29677 0.0129 0.07962216 0.22911948 0.07964541
-0.24516 0.0129 0.10593000 0.20079910 0.10599321
-0.19355 0.0129 0.15069789 0.05516336 0.15078407
-0.14194 0.0129 0.23883382 -0.05363119 0.23890443
-0.09032 0.0129 0.46349907 0.37045664 0.46355612
-0.03871 0.0129 1.48632567 2.41385925 1.48644065
-0.01290 0.0129 3.83449701 4.62512498 3.83435649
0.01290 0.0129 4.42121220 5.63512478 4.42443179
0.03871 0.0129 4.52331891 4.53508576 4.52399697
0.09032 0.0129 3.25283283 3.16439666 3.25273651
0.14194 0.0129 2.62989437 2.47764699 2.62995116
0.19355 0.0129 2.26172620 2.13848521 2.26183925
0.24516 0.0129 2.01336763 1.95231425 2.01344754
0.40000 0.0129 1.57929020 1.58108784 1.57924127

True No Map With Map True No Map With Map
0.00003312 -0.02967877 -0.00014424 -0.00123211 0.00510379 -0.00123076
0.00005368 0.03406785 -0.00003871 -0.00173954 -0.07977106 -0.00176440
0.00009401 0.09624285 0.00012811 -0.00259535 -0.13304302 -0.00265020
0.00018323 0.08994510 0.00034680 -0.00417904 -0.08602245 -0.00426194
0.00041800 -0.03752552 0.00063424 -0.00752793 0.08568925 -0.00762896
0.00123034 -0.23020095 0.00132026 -0.01625616 0.26892630 -0.01635764
0.00587308 -0.15340532 0.00583234 -0.04945086 0.07111119 -0.04952390
0.09964524 1.07899882 0.10064434 -0.36327765 -1.38006892 -0.36333288
1.83132606 2.65316096 1.83542437 -2.41804125 -3.04412791 -2.41681990
9.25729470 6.04753022 9.25774822 1.00158548 1.19976481 1.00025011
5.24987421 4.78600541 5.25097506 0.69334021 0.73212362 0.69287164
3.35173455 3.25907239 3.35178881 0.22881300 0.22695570 0.22885594
2.66240669 2.52571398 2.66266548 0.11880174 0.05174389 0.11869870
2.27678206 2.17434706 2.27711095 0.07513994 0.02115217 0.07496224
2.02172571 1.97913221 2.02198072 0.05287338 0.03560597 0.05272972
1.58175442 1.57152579 1.58166512 0.02545255 0.04008938 0.02552800
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(a)

0. j

0*6

(c)

Fig. 5.3. The stress r on [0, 1] x [-7r, ir]: (a) True stress, (b) computed stress by
using MAM, and (c) computed stress without using MAM. In cases (b) and (c), the
number of degrees of freedom are the same and basis functions of order 8 are used.
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Although this paper is concerned with the equations of elasticity on polygonal
domains, for brevity, we consider an elasticity problem on a sector region in the next
example.

Example 5.11. Consider the equations of elasticity (11) and (12) in a wedge-shaped
domain

0**) = {(r,0): r < 2, -a < < a},0: a < 90*

which is isotropic with material constants E = 1000 and V = 0.3. The displacement
functions given below satisfy the equations of elasticity in the domain n(c):

rA

u7(r,0) = F--I{-(, + 1)f(0)} (46)

uo(r,0) = A (47)

where

f(0) = sin(A + 1)0
900
a

E
G E

2(1 + v)'

The corresponding stress tensor axe

ar = r(A-l){(A +1)--(A -I- 1)2} sin(A + 1)0,

a = = r(\-')A(A+I)sin(A+1)0,

r, -- -r•-\A(A + 1)cos(A + 1)0.

It is worth noting that ue = r,. = 0 along the boundary 0 = ±a. Thus this problem
could be solved so that the condition ue = 0 would be imposed by proper combination
of u. and u.. Nevertheless, here we will impose the displacements(nonhomogeneous
essential boundary conditions) along the entire boundary of the domain. Let us note
that the displacements axe strongly singular at the vertex. In this example we show
that our method performs very well even for this case. In the p-version of Finite
Element Method, used for this example, the essential boundary conditions are imposed
by the L 2 projection. Hence the error of the method now includes also the error of
the approximation of the boundary condition. Therefore, we have to expect that the
strain energy will not necessarily be monotonically decreasing with p, the order of base
functions, as it would be if the nonhomogeneous boundary condition would be satisfied
exactly ( See also remark 5.1). Let us note that in all other examples mentioned in this
paper natural boundary conditions are used; hence the strain energy is monotonically
increasing with p.

21



Let fl2 be the upper half of fl(**) as shown in Fig 5.4. Along the entire boundary
of fl~a2, the following displacement functions in the x-y coordinate system are imposed:

u, = u cosO-uesin0
U, =- usin0+uecos0

which correspond to the displacement functions (46) and (47) in the polar coordinate
system. The singularity of this problem can be as strong as desired by taking a close
to 900 as shown in Fig. 3.2 and Table 5.2.

Furthermore, it is not difficult to show that

Ou:- AAr(A-') sin(A - 1)0,

ax
49UZ - AAr(-1) cos(A - 1)0,
8Y

O__ - AAr(A-1) cos(A - 1)0,
ax
ov. - AAr(._I) sin(A - 1)0,
IOY

where A -(A + 1)/(2G). Thus, for six representative wedge angles a = 50, 600, 700,
800,850,890, the true strain energy (1/2)B({u,}, {uf}j), {u.}, = {u•, u'}T, on the
domain flN() are as follows:

On n(25), UQ({u,}) = 0.4457011132335915D-02

On f('), U({u}) = 0.1531526418625024D-02
On n(7O) U({u,}) = 0.5573484518544861D-03

On n(s), U({tUj) = 0.1707470731728283D-03

On 1•s5), U({uQ }) = 0.6899588499654107D-04

On fln(2), u({u,,}) = 0.1178312402203123D-04.

Now n() = {(r,0) : r < 1,0 _< 0 < a)} C 0a) is chosen as a singular region, a
neighborhood of the singular point (0,0), on which MAM will be applied. As it was
mentioned in Remark 3.2,

u o and u,o

are imposed along the boundaries 0* = 0 and 0* = of (fs))* = {(r*,09) : r* <

1, 0* < a//}. Here / is an optimal mapping size, 1/A = a/(90 - a).

Table 5.2. The eigenvalue A = 90 0/a - 1 for six representative wedge angles a.

a 500 60° L 700 800 850 89-
A 0.80000 0.50000 0.286714 0.125 0.0588235 0.01124
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Fig. 5.4. The scheme of Mesh I on the domain !Q('.

23=a

• 80-=€a/2

X-axis

'' 0.15 e

Fig. 5.5. The scheme of Mesh V on the domain fl()2
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Table 5.3. The strain energies on the domain fl' for a = 500, 600, 700, 800, 850, 890
when MAM is applied.

p-deg DOF 500 600 700
1 2 0.4387492745431457D-02 0. 1520859482894121 D-02 0.5567345729310525D-03
2 10 0.4456887439527751D-02 0. 1531572785147233D-02 0.5573874898294548D-03
3 22 0.4457011922197191D- 02 0.1531527952481516D-02 0.5573494680021682D-03
4 42 0.4457011143393066D-02 0. 15315264508271 15D-02 0.5573484777837966D-03
5 70 0.4457011 132531040D-02 0. 1531526419381477D-02 0.5573484525381751D-03
6 106 0.445701 1132340058D-02 0. 1531526418643714D-02 0.5573484518728477D-03
7 150 0.445701 1132336056D-02 0.1531526418625500D-02 0.5573484518549730D-03
8 202 0.4457011132335964D-02 0. 1531526418625041 D-02 0.5573484518544919D-03

p-deg DOF 800 850 890
1 2 0.1709561207603345D-03 0.6906812121402299D-04 0. 1 17863953751702OD-04
2 10 0.1707578614952583D-03 0.6899855353039026D-04 0. 1 178322837770610D-04
3 22 0.1707473741570929D-03 0.6899596270247496D-04 0. 1 178312715834583D-04
4 42 0.1707470816190254D-03 0.6899588725323426D-04 0. 1178312411538886D-04
5 70 0. 1707470734116305D-03 0.6899588506198350D-04 0. 1 178312402485034D-04
6 106 0.1707470731796349D-03 0.6899588499832774D-04 0. 1 178312402218292D-04
7 150 0.1707470731 730394D-03 0.6899588499647640D-04 0. 1 178312402211005D-04
8 202 0.1707470731728518D-03 0.6899588499642211D-04 0. 1178312402209949D-04

Table 5.4. The strain energy on the domain Sl2*) obtained by the optimal mesh
refinement, Mesh V.

p-deg DOF 500 600 700
1 10 0.44056700205401 30D-02 0.156648711 5006998D-02 0.6053103198646025D-03
2 42 0.4457420260186373D-02 0.15344721 707652719D-02 0.564741 5490783892D-03
3 78 0.4457064766350695D-02 0.15319240785 12398D-02 0.560689592591 0377D-03
4 138 0.445701 7168219616D-02 0. 1531597705602884D-02 0.5597224836509342D-03
5 222 0.4457011931428601D-02 0.1531546547014034D-02 0.5591135803203382D-03
6 330 0.44570112491' '45OD-02 0.1531535988017260D-02 0.5587320835784172D-03
7 ,462 0.4457011150167903D-02 0.1531531515488644D-02 0.5582545129703971D-03
8 618 0.445701113580271 1D-02 0.1531529449633110D-02 0.5579538617159367D-03

p-deg DOF 800 1850 ____890

1 10 0.2889017640162947D-,)3 j0.3576618879140340D-03 0.6182592096409667D-03
2 42 0.2534095506899352D.0M 0.35050353422851 37D-03 0. 7129742782372550D-03
3 78 0.2473114711669522D-04" C.3607138018058794D-03 0.7936052278053867D-03
4 138 0.2445714254542476D-03 0.37018025014889 18D-03 0.8591464052345034D-03
5 222 0.2337583505325639D-03 0.337593145691 1586D-03 0.7918101347523176D-03
6 330 0.2253173665961850D-03 0.3105604155630747D-03 0.7325557688296332D-03
7 462 0.2092777698103482D-03 0.2447446052984088D-03 0.5464419176391876D-03
8 618 0.1981310492965937D-03 0.1968803334211282D-03 0.4054869521310821D-03

24



Throughout this paper, to measure the error of the finite element solutions, we use
the following definition:

IIQJr=[ - U({uFEI} (48)

That is, it is the square root of the difference between the true strain energy and the
computed strain energy divided by the true strain energy. It was shown in (Q36]) that
11611E,, is actually the relative error in the energy norm, provided that one of
the following cases applies: all Boundary conditions are either homogeneous Dirichlet
or arbitrary Neumann boundary conditions; some Dirichlet boundary conditions are
nonhomogeneous, but all other boundary conditions are either homogeneous Neumann
or homogeneous Dirichlet and the governing equations are homogeneous. Moreover
all examples in this section are one of these cases. Hence in what follows we will call
IIEItk. the relative error in the energy norm.

For the various wedge angles a, the total strain energies on f1() obtained by ap-
plying MAM on Mesh I, shown in Fig. 5.4, are given in Table 5.3. The relative errors
in the energy norm(%) are given in Fig. 5.6. By comparing with the true solutions, we
can conclude that MAM is able to yield accurate solutions at virtually no extra cost,
no matter how strong singularity the problem contains.

In order to compare the results obtained by MAM with those obtained by the mesh
refinement method, Mesh I of 4 elements(see, Fig. 5.4.) are refined by putting circular
layers of radii a, a 2, a 4 5 , a .6, or? Is, centered at the origin, where a = 0.15 (which
is known to be an optimal geometric ratio for a geometric mesh refinenment for the h-p
version of FEM). The refined mesh obtained by putting 2, 3, 4, ... , 9 layers will be
denoted by Mesh II, Mesh III, Mesh IV,..., and Mesh IX, respectively. These meshes
have 6, 8, 10, 12,...,, 20 elements respectively. For example, Mesh V is as shown in Fig.
5.5.

The strain energy, obtained by applying the standard FEM with the refined Mesh
V to the problems on the domain fl(' are given in Table 5.4. And their relative errors
in the energy norm, 11-61E,,, computed by using the true strain energy are shown in
Fig. 5.7.

Remark 5.1. The energy reported in the tables 5.3, 5.4, 5.5 are not monotone
with p. This is caused by the fact that the boundary condition is imposed only ap-
proximately. For higher p this error has small influence and the energy decreases as it
would occur if the (essential) boundary condition would be exactly imposed.

Table 5.4 and Fig. 5.7 show that the mesh refinement method can handle the weaker
singularities. However it fails to give any practical solution of elasticity problems with
very strong singularities such as the cases when a > 75*. In order to show this fact
vividly, the standard FEM is applied to the case when a = 89* with further refined
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meshes; Mesh I, Mesh III, Mesh V, Mesh VII, and Mesh IX. The computed strain
energies for those geometrically refined meshes are given in Table 5.4 and Table 5.5
and their relative error in the energy norm axe shown in Fig. 5.8. In this case, by the
massive geometric mesh refinements, finite element solutions are improved a little bit.
However, the accuracy is not acceptable at all. In other words, the h-p version of the
FEM fails for this problem.

Remark 5.2. (1) Even Though 3 = a/(90 - a) is an optimal mapping size
for the problems on the domain fl('), MAM with other choice of mapping size yields
approximate solutions of practical accuracy. Actually MAM with mapping size (> 100)
yields the relative error in the energy norm <_ 3% when the order of basis functions is
8 and Mesh I is used for the problem on the domain 0(".

(2) It is worth noting that MAM can handle the elasticity problems even when the
boundaries of the neighborhoods of their singularities are imposed by non-homogeneous
essential boundary conditions.

S10.1

Z

*---0-- Soq1 g
0

U SO Deg %

NUMBER OF DEGREES OF FREEDOM

Fig. 5.6. The relative error in the energy norm(%) when MAM is applied
with Mesh I.
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Table 5.5. The strain energies on the domain 11(89) obtained without applying
MAM.

p-deg DOF Mesh I DOF Mesh III
1 2 0.8348764761969085D-03 6 0.6720455342291412D-03
2 10 0.8363598689554478D-03 26 0.7753691417481764D-03
3 22 0.9184008854068470D-03 50 0.8631892906394158D-03
4 42 0.9931577497683493D-03 90 0.9345644101368223D-03
5 70 0.9137775851488808D-03 146 0.8612360703348015D-03
6 106 0.8430469500300520D-03 218 0.7967076857397165D-03
7 150 0.6223823176457848D-03 406 0.5940288770994173D-03
8 202 0.4550174531945867D-03 510 0.4405282879009032D-03

p-deg DOF Mesh VII DOF Mesh IX
1 14 0.5688829276912590D-03 16 0.5235413474168798D-03
2 58 0.6556907603472391D-03 72 0.6030890129562007D-03
3 106 0.7297117726166816D-03 132 0.6710403386777638D-03
4 186 0.7898923442515647D-03 232 0.7262984181673099D-03
5 298 0.7280587060296026D-03 372 0.6695176825383317D-03
6 442 0.6736470524085897D-03 552 0.6195529458233573D-03
7 618 0.5027442583422036D-03 772 0.4626180089851831D-03
8 826 0.3733095376025999D-03 1032 0.3437619833159763D-03

S...I. . .."". " '. . .. I

4------..--v---•- --

o 0z

I °-. " .

S00
.... o*... o."... "0. ..

c ..- -.. SO D" -_"' -
U • -.. &..60 Dog .. ,1(_. 70D0 Dog 1:1. ,.01."

85 Dog

101 106 10'

NUMBER OF DEGREES OF FREEDOM
Fig. 5.7. The relative error in the energy norm(%) on the domains fl() for

a= 50,60,70,80,85,89 when the p-version of FEM is applied with Mesh V.
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Fig. 5.8. The relative error in the energy norm(%) when the h-p version of theFinite Element Method is applied for the problem on the wedge domain fl(') of a = 89*.

In the first two examples, the smallest eigenvalues A• were known. Thus, it was
possible to choose an optimal mapping size # = 1/,A. However, in engineering practices,
the exact eigenvalues, which represent the intensity of singularities, are not known in
advance. The next two examples demonstrate that MAM succeeds in yielding good
approximate solutions even for these cases.

Example 5.11L. Let us consider the equations of elasticity on a domain f13 shown
in Fig. 5.9, which is isotropic with material constants; E = 1000 and v = 0.3. Suppose
the boundary conditions are given as follows:

(I) un =0, ut=0(fixed) along ri ur2,
(2) T1 = 10, Tt = 2 along rs,

(3) Te = 0,rTt = 0 (traction free) along (9) \(re U h2 u rs).

Then it follows from the arguments in §3t1 that this problem has singulaoities at the
crack tipnP1(0, 0) and the corner P2t(2, 2). Moreover, suppos twe nbody fore is zero,
that is, fign) = f0, , then mini Re(,s)} are approximately 0.3 and 0.7 at kno(0,w0) and
Pp(2,m2) respectively.
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Fig. 5.9. The domain Q3 and the line segment L which is on the straight line
= X(tan r/8).

For the finite element approach, we construct two meshes, Mesh I and Mesh II
on fl as shown in Fig. 5.10. Mesh II is obtained from Mesh I by putting layers of
radii 0.5, 0.5o, 0.5o2, 0.5or3 centered at P1 and layers of radii 0.5, 0.5o, 0.50r2 centered
at P2, where or = 0.15. Mesh I and Mesh II have 22 and 48 elements respectively.
In Example 5.111, we use the mapping size P- 6 and P = 2 on the singular regions
Si = {(z,y) : II(x,y) - (0,0)11 _< 0.5} and S2 = {(x,y) : lI(z,y) - (2,2)11 _< 0.5}
respectively.

In Examples 5.111, "With Map" stands for the results obtained by applying MAM
on Mesh I. " No Map" and " 48EL " stand for the results obtained by the standard
Finite Element Method on Mesh I and Mesh II respectively without applying MAM.

The total strain energy obtained by the following three ways is listed in Table 5.6:
the p-version of the FEM on Mesh I by applying MAM(With Map); the p-version of
the FEM on Mesh I with no Map(No Map); the p-version of the FEM on Mesh II with
no Map(48EL).
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Fig. 5.10. (a) Mesh I (22 elements); (b) Mesh II (48elements).

Table 5.6. Total strain energy on 13. when the body force is zero.

p-deg With Map 48EL No Map
1 1.702132029810480 1.656404349217337 1.231603737683330
2 2.061010428583605 2.018717728104414 1.605510783438384
3 2.093985634086386 2.063320794501468 1.736330296578600
4 2.110046396546211 2.082748318204508 1.815186503511321
5 2.113129774277219 2.089615423359967 1.864716288927604
6 2.113560741772014 2.093441297022001 1.899152183780876
7 2.113727076747088 2.096139989799332 1.925085281651720
8 2.113785840066801 2.098163679729239 1.945329260774251
9 2.113804271632455 1 1 _1

By applying the extrapolation approach given in Chapter 4 of ([36]) to the second
column of Table 5.6 and the fourth column, DOF, of Table 5.7, we obtain U(u.) =
2.113815563245032, the computed true total energy.

Table 5.7 is the relative error in strain energy(%) computed by applying the com-
puted true energy to Table 5.6. And they are plotted in Fig. 5.11.
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Table 5.7. Relative errors in the energy norm (%) and Degree of Freedom for the
cases in Table 5.6.

p-deg With Map No Map DOF 48EL DOF
1 44.131 64.603 38 46.517 92
2 15.805 49.038 120 21.209 280
3 9.686 42.259 226 15.456 488
4 4.223 37.587 376 12.123 792
5 1.801 34.328 570 10.700 1192
6 1.098 31.867 808 9.818 1688
7 0.647 29.880 1090 9.144 2280
8 0.375 28.232 1416 8.605 2968
9 0.231 1786 1 1_ 1

In this example, the displacements vary within very small ranges. Hence we can not
see a clear distinction between "With Map" and "No Map" when their graphs are plot-
ted. However, the differences are clear when the stresses are compared. As an example,
the x-component (U) of the displacement and the equivalent stress (a.) at the points
(r, 4r/8), for r = 0.9,0.8,0.7,0.6,0.4,0.3,0.2, 0.1, and -0.1, -0.2, -0.3, -0.4, -0.6, -0.7
along the line y = z tan(Tr/8) are listed in Table 5.8.

The equivalent stresses along the line L(see, Fig. 5.9), given in Table 5.8, for three
cases are plotted in Fig. 5.12. In case of applying MAM, the basis functions resemble
the true solution around the singularities, hence the stresses near the singularity at
Pi (0, 0) are very large. Actually, the equivalent stress at P1 (0, 0) is infinity. We plotted
the graph of the equivalent stresses on fl. = [-2, -2] x [-2, -0.1] in Fig. 5.13. In
Fig. 5.13, the x-grid and y-grid sizes are 0.2 and 0.1 respectively. In this example, the
equivalent stress of "With Map" is much bigger than "No Map" near the singularity
at P1(0,0). One can notice this fact from Fig. 5.13.

The equivalent stresses along the line L(see, Fig. 5.9), given in Table 5.7, for three
cases are plotted in Fig. 5.12. In MAM, the basis functions resemble the true solution
around the singularities, hence the stresses near the singularity at PI(0,0) are very
large. Actually, the equivalent stress at P1 (0, 0) is infinity. We plotted the graph of the
equivalent stresses on fl. = [-2, -2] x [-2, -0.11 in Fig. 5.13. In Fig. 5.13, the x-grid
and y-grid sizes are 0.2 and 0.1 respectively. In this example, the equivalent stress of
"With Map" is much bigger than "No Map" near the singularity at P1 (0, 0). One can
see this fact from Fig. 5.13.
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Fig. 5.11. Relative error in the energy norm(%) for the domain 113 containing two
corner singularities.
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Fig. 5.12. The equivalent stress along the line L shown in Fig. 5.9. The scale
on the horizontal axis represents the radius r of the polar coordinates (r, •r/8) of the
points on L. For these computations, basis functions of order 8 are used.
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Fig. 5.13. The graph of equivalent stress on 02. [ [-2,21 x [-2, -0.11 : (a) No
Map: (b) With Map. The x-grid and the y-grid sizes are 0.2 and 0.1 respectively. The
order of basis functions used for this computation is 8.

Table 5.8. Equivalent stress (ae) the displacement (U: x-displacement ) along the
line L in Fig. 5.9. For these computations, basis functions of order 8 are used.

With Map No Map 48EL
r U ae U a, U a,

0.9 6.836E-6 4.421 -2.153E-4 3.945 -1.361E-5 4.375
0.8 2.516E-4 5.897 -1.243E-6 5.234 2.280E-4 5.833
0.7 5.075E-4 7.762 2.226E-4 6.874 4.806E-4 7.678
0.6 7.695E-4 10.147 4.501E-4 8.972 7.391E-4 10.038
0.4 1.289E-3 17.647 8.953E-4 15.504 1.252E-3 17.452
0.3 1.535E-3 24.220 1.090E-3 21.029 1.493E-3 23.936
0.2 1.754E-3 35.811 1.250E-3 31.129 1.705E-3 35.338
0.1 1.908E-3 64.809 1.292E-3 52.415 1.848E-3 63.761
-0.1 2.003E-2 44.053 1.547E-2 36.843 1.963E-2 43.508
-0.2 2.253E-2 26.962 1.891E-2 23.818 2.218E-2 26.716
-0.3 2.430E-2 20.401 2.072E-2 20.083 2.397E-2 20.217
-0.4 2.576E-2 16.809 2.251E-2 14.149 2.546E-2 16.687
-0.6 2.831E-2 12.881 2.524E-2 12.135 2.803E-2 12.791
-0.7 2.949E-2 11.660 2.650E-2 11.066 2.921E-2 11.636
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So far we have considered the corner singularities on isotropic elastic bodies. How-
ever, the interface singularity caused by an abrupt change in material properties in an
elasticity problem has a similar structure to that of the corner singularity. However,
the interface singularities are usually more complex and stronger than the corner sin-
gularities. In order to show that MAM can also handle this type of singularity, our
next example concerns an elasticity problem with two interfaces.

Example 5.IV. Consider the equations of elasticity on the domain 04 shown in
Fig. 5.14 that is composed of three isotropic materials. That is, f14 = 1l41 U f142 U S143,

and the material constants on each subdomain are given in the following table:

On fl41 On f142 On fl43

E 1000 10 1000

v 0.1 0.001 0.3

We also assume that it has a nonzero body force, {f} = {10, 1000}T.

Fixed
(-2.2) '12(2,2)

Free Fe

043 '41

(-2,0) Free (0,0) Free (2,0)

Fig. 5.14. The domain f14 for the interface problem with two interfaces.

This interface problem has singularities at P/ (0, 0), P2(2, 2), and P3(-2, 2). Thus we
choose the neighborhoods Si of the singularities as follows: Sj = {(z, y): I(x, y)-PII <
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0.5},j = 1,2,3. A mesh on 114 that is compatible with these neighborhoods of the
singularities are shown in Fig. 5.15.

The success of the Method of Auxiliary Mapping depends on the choice of the
mapping size P of the auxiliary mapping. In our method, a circular sector, S =
{(r,0) : 0 _< 0 < Oo, r < ro}, is mapped onto S = {(r*,0"): 0 < 0* < Oo/8, r* < r1/},

by the mapping 1̀ (r, 0) = r1/,(cos 0/8, sin 0/8). Thus, if the mapping size, #, is
very large then the mapped region will consist of very narrow circular sector elements.
Nevertheless the convergence theorem given in the previous section still holds since
these elements satisfy the maximal angle condition ([3]) which allows one angle to be
arbitrarily small.

In this example, "86 = (,81, P2,/%) " means the results obtained by applying MAM
with the auxiliary mappings of size #I, P2, 83 for the singular regions S1, S2, S3 respec-
tively. In particular, "P = (1,1,1)" stands for the case when no mapping technique
is used. The total strain energy obtained by the various choices of mapping sizes are
listed in Table 5.9.

Table 5.9. Total strain energy for the interface problem.

p-deg 6 = (8, 10, 10) / = (5, 10, 10) DOF
1 123032.2828452089 123284.2678773375 38
2 150287.7980849437 152583.4051500356 116
3 158804.9631362990 159786.2535574225 210
4 161232.7426132401 161314.8716586071 344
5 161708.1813612756 161697.6525341540 518
6 161749.2509783793 161745.8457528930 732
7 161760.1348046330 161758.1355019662 986
8 161761.8532415435 161760.3221783005 1280
9 161762.9347649495 161761.8908487467 1614

p-deg P = (5,5,5) t = (1,1,1) DOF
1 116027.58299108 58106.6173116895 38
2 150578.57685495 88079.9225407295 116
3 158821.08704690 97828.5205550101 210
4 160167.37006738 104140.5899691367 344
5 160742.79149754 108695.2364448717 518
6 161051.55851408 112211.9290644471 732
7 161239.18068546 115041.7425766592 986
8 161361.96325978 117386.4326246329 1280
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(-2,2) (2.2)

(-2,0) (-1,0) (0,0) (1,0) (2,0)

Fig. 5.15. A mesh for using MAM on the domain f14 with two interfaces.

As before, extrapolating the second column of Table 5.9 gives

£(uez) = 161765.7679239559

as the computed true total energy.

Table 5.10 is the relative error in the energy norm(%) computed by using this true
energy and Table 5.9. And these relative errors in the energy norm versus the number
of degrees of freedom are plotted in Fig. 5.16.

Table 5.10. The relative error in the energy norm (%) and Degree of Freedom for
the cases in Table 5.8.

p-deg /=(8,10,10) = (5,10,10) 6= (5,5,5) 6= (1,1,1) DOF
1 48.933 48.773 53.173 80.050 38
2 26.637 23.825 26.300 67.491 116
3 13.529 11.062 13.492 62.869 210
4 5.740 5.280 9.940 59.685 344
5 1.887 2.052 7.952 57.277 518
6 1.010 1.110 6.645 55.347 732
7 0.590 0.690 5.705 53.743 986
8 0.492 0.580 4.996 52.377 1280
9 0.418 0.490 1614
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Fig. 5.16. Relative error in the energy norm (%) for the interface problem.

Due to the large body force, we can see a big distinction between P = (8, 10, 10)
and 0-- (1, 1,1) even in the displacements. The graphs the y-displacement for the two

came,/ -= (8, 10,10) and M = (1,1,1), are plotted in Fig. 5.17. Once again, the stresses

obtained by using MAM is larger than the stresses obtained by the standard FEM at
the neighborhoods of singularities. Numerical experiments show that the singulaeities
ats 2(2,2) and8 3(-2,2) are much stronger than that at P((0, 0).

From Table 5.9 and Table 5.10, we can conclude that the mapping size / 2 = 5 is
not big enough for the singularity at P2. On the other hand, experiments show that
the mapping sizes #I = 10 and #2 = 15 are too big for the singularities at P1 and P2
respectively.

Remark 5.3. In all cases except the second example we had natural boundary
conditions and hence the energy increases with p.
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Fig. 5.17. The graph of the y-displacement over 1= [-2, 2] x [0, 21: (a) No Map;
(b) With MAM. The r-grid and y-grid sizes are 0.2 and 0.1 respectively. The order of
basis functions used for this computation is 8.

If an oversized auxiliary mapping (i.e. 3 > (min{Re(A)})- 1 ) were used in MAM,
then one cannot see the expected improvement until the polynomial degree is of high
order. It was shown in ([81) that if larger mapping size is selected, then one must choose
higher degree basis polynomials to get large improvement in accuracy. Hence, from a
practical point of view an optimal choice for the mapping size at each singular region
is 3 = (min{Re(Aj)})-1 . Thus, in order to obtain optimal results from MAM, it is
desirable to know the eigenvalues A at each singularity. Actually, it can be computed by
solving trigonometric equations given in §2.1 for the corner singularity or by using the
computer code given in ([31]) for the interface singularity. Even if we do not have prior
knowledge of the eigenvalues, MAM, using an auxiliary mapping of any size / > 1,
will always yield a large improvement. In fact, since an oversized auxiliary mapping
yields better results than undersized auxiliary mapping (unless the basis functions are
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of very low degree), it is better to start with a large P, for example # = 10 in such a
case. Another possibility is to use different strengths of mappings and select the one
which leads to the largest strain energy.

6 Concluding Remarks

MAM can efficiently handle the plane elasticity problems containing such singularities
as corner and interface singularities. No matter how strong singularities the problem
contains, MAM yields an accurate solution at vitually no extra cost if the strn,-tures
of singularities are known. Actually MAM can handle the elasticity problems which
even can not be solved by the h-p version of the Finite Element Method. In applying
MAM, an optimal results can be obtained if the structure of the singularities are known.
However, even if the prior knowledge on the singularities are not known, MAM can
yield very reasonable solutions to any plane elasticity problems with singularity.
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